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The development of conjugate addition (Michael) reactions for Table 1. Effect of Additives on the Catalyzed Michael Addition of
stereoselective generation of-C bonds remains an important ~ Butyraldehyde to Methyl Vinyl Ketone

challenge in organic synthesi$ewis acid-basetdand organocata- Q M 1a
lytic strategies have provided many successe®st organocata- )<eCH3
. .. - N Bn
lyzed Michael additions of stabilized carbon nucleophiles have used o o ” CHs o o o
either nucleophiles or electrophiles that are highly activated. For J\ + \)j\ (20 mol%) )Wl\ + Et
example, Michael additions of highly activated nucleophiles, such H CHs Cocatalyst. H CH, Ho
as malonatésr nitroalkane3to simple enones, have been reported; Et (20 mol%) Et C.H
. . : 3 20h 4 5 a7
alternatively, relatively unactivated ketones or aldehydes have been
used _with highly activated Michael acceptors, §uch as nit_r(_)allfenes. entry cocatalyst yield 42 (%) conv 5° (%) ee® (%)
Relatively few examples of organocatalyzed Michael additions have 1 none a1 s -
involved simple aldehyde donors with enone acceptors. Jgrgensen 5 Hel 37 38 29
has reported the direct Michael addition of aldehydes to enones 3 TFA 24 40 55
using a chiral pyrrolidine catalystList has reported catalysis of 4 AcOH 48 <5 75
intramolecular aldehydeenone Michael reactions with a Mac- 2 Egteencﬂol ?éé ig gi
Millan imidazolidinone cgtalys‘l. _ 7 4-NO,—phenol 52 <5 82
Here, we report that intermolecular aldehydgone Michael 8 4-NO,—catechol 62 <5 82
addition reactions can be catalyzed with a MacMillan imidazoli- 9 4-EtO,C—catechol 85 <5 81

dinone, provided that an appropriate hydrogen-bond-donating

cocatalyst is employed. Cocatalyst identity is critical in terms of , _° Yield of isolated product after column chromatography on silica gel.
. : L . From*H NMR analysis of crude reaction mixtureFrom chiral-phase

chemoselectivity (Michael addition vs aldol condensation) and also ¢ of the carboxylic acid derived frod

affects yield and stereoselectivity. Simple modification of the

imidazolidinone leads to enhanced stereoselectivity. Furthermore,

we have isolated an imidazolidinone-derived enamine and shown

it to be a competent nucleophile. Most prior reports of imidazoli-

la in DMSO<s in the presencefo4 A molecular sieves. NOE
analysis of enaminé revealed a preference for tReconfiguration
about the N-C(sp?) bond as indicated belo#.

dinone-catalyzed Michael additions have involved electrophilic O b, 0
activation ofo,3-unsaturated aldehydes via iminium ion formation. Me“@t‘ W/ Hyr ’\ﬂeMe <

We began by asking whether Michael additions of aldehydes to @e N™ "H S P,t‘ N~ Me w:)
enones could be simultaneously catalyzed by a pyrrolidine (nucleo- X Mo “Strong A Yy Ho= " weak
philic activation of the aldehyde via enamine formation) and imid- S,fl’g’l‘zg ¢ NOE noNOE NOE
azolidinonela (electrophilic activation of the enone via iminium e " ez M

formation). Control experiments revealed that-HCl alone could

catalyze the Michael addition, and that the imidazolidinone reacts ~ We surveyed a range of acidic cocatalysts in an effort to improve
with the aldehyde to form an enamine, which suggests nucleophilic Michael adduct yield without loss of the favorable selectivities
activation rather than electrophilic activation. These observations (Table 1). The poor qualities of HCI as cocatalyst were observed
meshed with recent reports from MacMillan et al., on organocataly- 10 with other strong acids, but weakly acidic additives proved to
tic a-chlorination of aldehydes catalyzed thg—HCI,2° and from be quite favorable in terms of aldol suppression and Michael adduct
List et al., on intramolecular aldehyde/enone Michael additions cata- Stereochemistry. We speculate that these additives activate the enone
lyzed byla—HCI2 both of which speculated on the intermediacy via hydrogen bond donatioid.Two features seem to be important

of enamines. In contrast to the observations by List et al. with for the cocatalyst. First, additives containing two adjacent hydrogen
intramolecular Michael reactions, however, we found that inter- bond donors (catechols in entries 6 and 8) are superior to single hy-
molecular Michael additions catalyzed tip—HCI were plagued ~ drogen bond donors of similar acidity (phenols in entries 5 arid 7).
by competition from aldol condensation of the aldehyde component Second, increasing the acidity of the catechol additives improves
(Table 1, entry 2). Use ofla without HCI led to enhanced the yield of the Michael addition (entries 8 and 9 vs entry 6).

chemoselectivity for the Michael reaction and substantially im- ~ Exploration of imidazolidinone derivatives showed a surprising
proved enantioselectivity but low overall yield (Table 1, entry 1). dependence on this component (Table 2). Catdigsterived from
The enamine derived from hydrocinnamaldehyde zadould cyclopentanone, afforded the Michael addition product with the

be generated slowly but quantitatively by mixing the aldehyde and highest yield and enantioselectivity. The Michael addition of a
variety of aldehyde/enone pairs was explored with the catalyst pair

T Current address: Department of Chemistry, Lebanon Valley College, Annville, lc+ 4'EIQC_CateChO| (Table 3); excellent enantioselectivities
PA 17003. were obtained.
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Table 2. Effect of Imidazolidinone Structure on the Catalyzed
Michael Addition of Butyraldehyde to Methyl Vinyl Ketone

o
Pyl
R o 0
i \)CJ)\ o N )<R
H CH, M (0mol%) WCH3
o Et 3 4-EtO,C-catechol Et 4
(20 mol%), 16 h
entry catalyst R conv 42 (%) ee’ (%)

1 la Me 78 81
2 1b Bu 19 22
3 1c —(CH2)4— 86 90
4 1d — (C Hz)s— <5 c

aFrom!H NMR analysis of crude reaction mixturéFrom chiral-phase
GC of the corresponding carboxylic acfdNot determined.

Table 3. Imidazolidinone-Catalyzed Michael Addition of Aldehydes
to Vinyl Ketones
o o 1¢ (20 mol%) 0 O
HJ\ * \)LR 4-EtO,C-catechol HWR
2 %), 20 h z
R, (20 mol%), R,
entry Ry R, yield? (%) ee’ (%)
1 Me Me 84 90
2 Me Et 79 92
3 Et Et 68 92
4 iPr Me 55 82
5 Bn Me 62 89
6 Bn Et 54 92

aYield of isolated product after column chromatography on silica gel.
b From chiral-phase GC or HPLC of an appropriate derivative.

Having identified an optimal cocatalyst for the aldehyde/enone
Michael reaction promoted by imidazolidinones, we conducted
additional NMR studies to probe the reactivity of enamindhe
preformed enamine (neat) was allowed to react with methyl vinyl
ketone in the presence of catalytic 4-E@>-catechol. The enamine
was consumed over 4 h, initially forming dihydropyr@as a single
diastereomet? The dihydropyran slowly hydrolyzed to generate
the keto aldehyde product. No hydrolysis of the enamine to
hydrocinnamaldehyde was detected.

OPh\h oPh\~
H Bn 1 Bn

MeNfN\ - MeN‘/N :
Me e _\C;) Me" e Q
7 Me 8 Me

The NMR experiments suggest that the aldehyelgone Michael
addition involves reaction of enamir@with a hydrogen-bond-
activated enone to generate zwitterion intermediatatermediate
7 exists in equilibrium with observed dihydropyr& and 7 is

Our results support recent suggestions that imidazolidinones can
serve as organocatalysts by nucleophilic activation of carbonyl
compound$;1°in addition to their well-precedented role as elec-
trophilic activators (via iminium formatior).We have provided
the first clear evidence for an imidazolidinone-derived enamine,
and we have shown that such an enamine displays the requisite
nucleophilicity. Our observation of coordinated action by an
imidazolidinone and a hydrogen-bond-donating additive raises the
intriguing prospect that juxtaposing such groups on molecular
scaffolds with defined folding preferences could generate new
families of selective and efficient multifunctional catalyts.
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